Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
3.
Biomedicines ; 11(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893181

RESUMO

Chronic liver diseases can lead to fibrotic changes that may progress to the development of cirrhosis, which poses a significant risk for morbidity and increased mortality rates. Metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and viral hepatitis are prevalent liver diseases that may lead to cirrhosis. The advanced stages of cirrhosis can be further complicated by cancer development or end-stage liver disease and liver failure. Hence, early detection and diagnosis of liver fibrosis is crucial for preventing the progression to cirrhosis and improving patient outcomes. Traditionally, invasive liver biopsy has been considered the gold standard for diagnosing and staging liver fibrosis. In the last decade, research has focused on non-invasive methods, known as liquid biopsies, which involve the identification of disease-specific biomarkers in human fluids, such as blood. Among these alternative approaches, extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic tools for various diseases, including chronic liver diseases. EVs are released from stressed or damaged cells and can be isolated and quantified. Moreover, EVs facilitate cell-to-cell communication by transporting various cargo, and they have shown the potential to reduce the expression of profibrogenic markers, making them appealing tools for novel anti-fibrotic treatments. This review focuses on the impact of EVs in chronic liver diseases and exploring their potential applications in innovative therapeutic and diagnostic approaches.

4.
Front Cell Dev Biol ; 11: 1218807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664463

RESUMO

In recent years, there has been a rapid expansion in our understanding of regulated cell death, leading to the discovery of novel mechanisms that govern diverse cell death pathways. One recently discovered type of cell death is pyroptosis, initially identified in the 1990s as a caspase-1-dependent lytic cell death. However, further investigations have redefined pyroptosis as a regulated cell death that relies on the activation of pore-forming proteins, particularly the gasdermin family. Among the key regulators of pyroptosis is the inflammasome sensor NOD-like receptor 3 (NLRP3), a critical innate immune sensor responsible for regulating the activation of caspase-1 and gasdermin D. A deeper understanding of pyroptosis and its interplay with other forms of regulated cell death is emerging, shedding light on a complex regulatory network controlling pore-forming proteins and cell fate. Cell death processes play a central role in diseases such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, autoinflammatory disorders, and cancer. Cell death often acts as a starting point in these diseases, making it an appealing target for drug development. Yet, the complete molecular mechanisms are not fully understood, and new discoveries reveal promising novel avenues for therapeutic interventions. In this review, we summarize recent evidence on pathways and proteins controlling pyroptosis and gasdermins. Furthermore, we will address the role of pyroptosis and the gasdermin family in metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Additionally, we highlight new potential therapeutic targets for treating metabolic dysfunction-associated steatohepatitis and other inflammatory-associated diseases.

5.
Front Oncol ; 13: 1224590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671053

RESUMO

Introduction: Polycythemia vera (PV) and essential thrombocythemia (ET) are diseases driven by canonical mutations in JAK2, CALR, or MPL gene. Previous studies revealed that in addition to driver mutations, patients with PV and ET can harbor other mutations in various genes, with no established impact on disease phenotype. We hypothesized that the molecular profile of patients with PV and ET is dynamic throughout the disease. Methods: In this study, we performed a 37-gene targeted next-generation sequencing panel on the DNA samples collected from 49 study participants in two-time points, separated by 78-141 months. We identified 78 variants across 37 analyzed genes in the study population. Results: By analyzing the change in variant allele frequencies and revealing the acquisition of new mutations during the disease, we confirmed the dynamic nature of the molecular profile of patients with PV and ET. We found connections between specific variants with the development of secondary myelofibrosis, thrombotic events, and response to treatment. We confronted our results with existing conventional and mutation-enhanced prognostic systems, showing the limited utility of available prognostic tools. Discussion: The results of this study underline the significance of repeated molecular testing in patients with PV and ET and indicate the need for further research within this field to better understand the disease and improve available prognostic tools.

6.
J Mol Med (Berl) ; 101(7): 813-828, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166517

RESUMO

Chitinase-3-like 1 protein (CHI3L1) is a secreted glycoprotein, strongly correlated with fibrosis severity in chronic liver diseases including non-alcoholic steatohepatitis (NASH). However, the mechanisms by which CHI3L1 contributes to fibrogenesis remain undefined. Here, we showed that infiltrating monocyte-derived liver macrophages represent the main source of CHI3L1 in murine NASH. We developed a floxed CHI3L1 knock-out (KO) mouse to further study the cell-specific role of CHI3L1 ablation. Wildtype (WT) and myeloid cell-specific CHI3L1 KO mice (CreLyz) were challenged with a highly inflammatory and fibrotic dietary model of NASH by administering choline-deficient high-fat diet for 10 weeks. Macrophage accumulation and inflammatory cell recruitment were significantly ameliorated in the CreLyz group compared to WT (F4/80 IHC p < 0.0001, CD11b IHC p < 0.0001). Additionally, hepatic stellate cell (HSC) activation and fibrosis were strongly decreased in this group (α-SMA IHC p < 0.0001, picrosirius red staining p < 0.0001). In vitro studies were performed stimulating bone marrow derived macrophages, THP-1 (human monocytes) and LX2 (human HSCs) cells with recombinant CHI3L1 to dissect its relationship with fibrosis development. Results showed an important role of CHI3L1 regulating fibrosis-promoting factors by macrophages (TGFB1 p < 0.05, CTGF p < 0.01) while directly activating HSCs (ACTA2 p < 0.01, COL1A1 p < 0.01), involving IL13Rα2 as the potential mediator. Our findings uncovered a novel role of CHI3L1 derived from liver macrophages in NASH progression and identifies this protein as a potential anti-fibrotic therapeutic target. KEY MESSAGES: We showed that CHI3L1 expression is increased in murine CDAA-HFAT diet NASH model, and that infiltrating macrophages are a key source of CHI3L1 production. Myeloid cell-specific CreLyz CHI3L1 knock-out in mice fed with CDAA-HFAT diet improved the NASH phenotype, with significantly reduced accumulation of pro-inflammatory macrophages and neutrophils compared with WT group. DEG and qPCR analysis of genes in CreLyz CHI3L1 knock-out mouse liver showed the mechanistic role of CHI3L1 in cellular chemotaxis. HSC is directly activated by CHI3L1 via receptor IL13Rα2, leading to upregulation of collagen deposition and pro-fibrotic gene, TIMP-1 and TIMP-2 release in whole liver. Direct stimulation of macrophages with CHI3L1 leads to upregulated expression of HSC-activation factors, suggesting its role in modulating macrophage-HSC crosstalk.


Assuntos
Quitinases , Subunidade alfa2 de Receptor de Interleucina-13 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quitinases/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
J Immunol ; 211(2): 287-294, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37256266

RESUMO

Antisense oligonucleotides (ASOs) are a novel therapeutic strategy that targets a specific gene and suppresses its expression. The cryopyrin-associated periodic syndromes (CAPS) are a spectrum of autoinflammatory diseases characterized by systemic and tissue inflammation that is caused by heterozygous gain-of-function mutations in the nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) gene. The aim of this study was to investigate the efficacy of an Nlrp3-specific ASO treatment in CAPS. An Nlrp3-specific ASO was designed and tested in murine cell lines and bone marrow-derived macrophages (BMDMs) from wild-type and CAPS mouse models. Nlrp3 knock-in mice were treated in vivo with Nlrp3-specific ASO, survival was monitored, and expression of organ-specific Nlrp3 and IL-1ß was measured. Nlrp3-specific ASO treatment of murine cell lines and BMDMs showed a significant downregulation of Nlrp3 and mature IL-1ß protein expression. Ex vivo treatment of Nlrp3 mutant mouse-derived BMDMs with Nlrp3-specific ASO demonstrated significantly reduced IL-1ß release. In vivo, Nlrp3-specific ASO treatment of Nlrp3 mutant mice prolonged survival, reduced systemic inflammation, and decreased tissue-specific expression of Nlrp3 and mature IL-1ß protein. The results of this study demonstrate that Nlrp3-specific ASO treatment downregulates Nlrp3 expression and IL-1ß release in CAPS models, suggesting ASO therapy as a potential treatment of CAPS and other NLRP3-mediated diseases.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Inflamação , Proteínas de Transporte/genética , Interleucina-1beta/metabolismo
8.
J Clin Med ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362687

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic posed a great threat to public health, healthcare systems and the economy worldwide. It became clear that, in addition to COVID-19 and acute disease, the condition that develops after recovery may also negatively impact survivors' health and quality of life. The damage inflicted by the viral infection on endothelial cells was identified quite early on as a possible mechanism underlying the so-called post-COVID syndrome. It became an urgent matter to establish whether convalescents present chronic endothelial impairment, which could result in an increased risk of cardiovascular and thrombotic complications. METHODS: In this study, we measured the levels of CRP, ICAM-1, VCAM-1, E-selectin and syndecan-1 as markers of inflammation and endothelial injury in generally healthy convalescents selected from blood donors and compared these to a healthy control group. RESULTS: We found higher concentrations of E-selectin and a lower level of syndecan-1 in convalescents in comparison to those of the control group. CONCLUSION: Based on our results, it can be concluded that, at least 6 months after infection, there is only slight evidence of endothelial dysfunction in COVID-19 convalescents who do not suffer from other comorbidities related to endothelial impairment.

9.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194627

RESUMO

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Assuntos
Hepatite , Inflamassomos , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/metabolismo , Hepatite/genética , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo
10.
Leuk Res ; 123: 106962, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183610

RESUMO

According to the current treatment recommendations, anagrelide, an oral antiplatelet agent, is recommended as a second-line therapy for patients with high-risk essential thrombocythemia experiencing intolerance or refractoriness to first-line approach, such as hydroxyurea or pegylated interferon alpha-2a. If there is a need for introduction of cytoreductive treatment in young patients with a perspective of lifelong exposure, both the efficacy and long-term outcomes should be known. We present the analysis of 48 young patients, diagnosed with essential thrombocythemia below the age of 60, who were exposed to anagrelide treatment for over 10 years. Our observations show that the highest proportion of complete remissions without adverse events and disease progression is seen in the JAK2-mutated patients. By evaluating the changes in hemoglobin concentration and serum erythropoietin throughout the study, we were able to reveal the development of progressive anemia, resulting from diminished susceptibility to erythropoietin and unrelated to bone marrow fibrosis, in patients harboring CALR mutation. Additionally, occurrence of new bone marrow fibrosis was confirmed in seven JAK2-unmutated patients at the end of the study. In summary, in young patient population, we recommend limiting the use of anagrelide to JAK2-mutated subgroup, reducing exposure time and underline the importance of periodic monitoring for the presence of bone marrow fibrosis.


Assuntos
Inibidores da Agregação Plaquetária , Mielofibrose Primária , Quinazolinas , Trombocitemia Essencial , Criança , Humanos , Eritropoetina/sangue , Inibidores da Agregação Plaquetária/uso terapêutico , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Quinazolinas/uso terapêutico , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/genética
11.
NPJ Aging ; 8(1): 10, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35927427

RESUMO

Age-related differences in stem-cell potency contribute to variable outcomes in clinical stem cell trials. To help understand the effect of age on stem cell potency, bone marrow-derived mesenchymal stem cells (MSCs) were isolated from young (6 weeks) and old (18-24 months) mice. HUVEC tubule formation (TF) induced by the old and young MSCs and ELISA of conditioned media were compared to one another, and to old MSCs after 7 d in indirect co-culture with young MSCs. Old MSCs induced less TF than did young (1.56 ± 0.11 vs 2.38 ± 0.17, p = 0.0003) and released lower amounts of VEGF (p = 0.009) and IGF1 (p = 0.037). After 7 d in co-culture with young MSCs, TF by the old MSCs significantly improved (to 2.09 ± 0.18 from 1.56 ± 0.11; p = 0.013), and was no longer different compared to TF from young MSCs (2.09 ± 0.18 vs 2.38 ± 0.17; p = 0.27). RNA seq of old MSCs, young MSCs, and old MSCs following co-culture with young MSCs revealed that the age-related differences were broadly modified by co-culture, with the most significant changes associated with lysosomal pathways. These results indicate that the age-associated decreased paracrine-mediated effects of old MSCs are improved following indirect co-culture with young MSC. The observed effect is associated with broad transcriptional modification, suggesting potential targets to both assess and improve the therapeutic potency of stem cells from older patients.

12.
Cell Mol Gastroenterol Hepatol ; 14(4): 751-767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35787975

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. The NLRP3 inflammasome, a platform for caspase-1 activation and release of interleukin 1ß, is increasingly recognized in the induction of inflammation and liver fibrosis during NAFLD. However, the cell-specific contribution of NLRP3 inflammasome activation in NAFLD remains unknown. METHODS: To investigate the role of NLRP3 inflammasome activation in hepatocytes, hepatic stellate cells (HSCs) and myeloid cells, a conditional Nlrp3 knock-out mouse was generated and bred to cell-specific Cre mice. Both acute and chronic liver injury models were used: lipopolysaccharide/adenosine-triphosphate to induce in vivo NLRP3 activation, choline-deficient, L-amino acid-defined high-fat diet, and Western-type diet to induce fibrotic nonalcoholic steatohepatitis (NASH). In vitro co-culture studies were performed to dissect the crosstalk between myeloid cells and HSCs. RESULTS: Myeloid-specific deletion of Nlrp3 blunted the systemic and hepatic increase in interleukin 1ß induced by lipopolysaccharide/adenosine-triphosphate injection. In the choline-deficient, L-amino acid-defined high-fat diet model of fibrotic NASH, myeloid-specific Nlrp3 knock-out but not hepatocyte- or HSC-specific knock-out mice showed significant reduction in inflammation independent of steatosis development. Moreover, myeloid-specific Nlrp3 knock-out mice showed ameliorated liver fibrosis and decreased HSC activation. These results were validated in the Western-type diet model. In vitro co-cultured studies with human cell lines demonstrated that HSC can be activated by inflammasome stimulation in monocytes, and this effect was significantly reduced if NLRP3 was downregulated in monocytes. CONCLUSIONS: The study provides new insights in the cell-specific role of NLRP3 in liver inflammation and fibrosis. NLRP3 inflammasome activation in myeloid cells was identified as crucial for the progression of NAFLD to fibrotic NASH. These results may have implications for the development of cell-specific strategies for modulation of NLRP3 activation for treatment of fibrotic NASH.


Assuntos
Inflamassomos , Cirrose Hepática , Células Mieloides , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Adenosina , Aminoácidos , Animais , Caspases , Colina , Hepatite/genética , Hepatite/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Lipopolissacarídeos , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Polifosfatos
13.
Int J Hematol ; 116(3): 442-445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35429330

RESUMO

Development of secondary CML has only been casually described, with few reports attempting to analyze and explain the mechanisms behind this phenomenon. Reported cases vary with regard to presumed pathogenesis and clinical characteristics, but similarities can be observed. This report presents the case of a patient diagnosed with CALR and ASXL1-mutated primary myelofibrosis who developed CML 13 years after the initial diagnosis. In contrast with previously reported cases, this patient did not have JAK2 or ABL1 gene mutations, and also exhibited primary resistance to tyrosine kinase inhibitor (TKI) treatment. Here, we analyze the molecular evolution of CML and describe successful treatment with concomitant therapy including a TKI and JAK inhibitor. This report aims to deepen clinical experience and further broaden knowledge about chronic myeloproliferative neoplasms.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Transtornos Mieloproliferativos , Mielofibrose Primária , Calreticulina/genética , Calreticulina/metabolismo , Doença Crônica , Proteínas de Fusão bcr-abl/genética , Humanos , Janus Quinase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide/tratamento farmacológico , Mutação , Transtornos Mieloproliferativos/genética , Mielofibrose Primária/diagnóstico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Repressoras/genética
14.
Hepatology ; 76(3): 727-741, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34997987

RESUMO

BACKGROUND AND AIMS: The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS: Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS: These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Animais , Fibrose , Humanos , Inflamassomos/metabolismo , Inflamação , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteínas NLR
15.
Sci Rep ; 11(1): 24194, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921208

RESUMO

Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies.


Assuntos
Cirrose Hepática/metabolismo , Neutrófilos/metabolismo , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Frutose/metabolismo , Hidroxiprolina/metabolismo , Fígado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
16.
J Hepatol ; 74(1): 156-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763266

RESUMO

BACKGROUND & AIMS: Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS: We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS: We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1ß secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS: These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY: Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.


Assuntos
Hepatócitos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Animais , Caspase 1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sistemas de Translocação de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Cells ; 9(10)2020 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993109

RESUMO

MiR-146a is upregulated in the stem cell-enriched limbal region vs. central human cornea and can mediate corneal epithelial wound healing. The aim of this study was to identify miR-146a targets in human primary limbal epithelial cells (LECs) using genomic and proteomic analyses. RNA-seq combined with quantitative proteomics based on multiplexed isobaric tandem mass tag labeling was performed in LECs transfected with miR-146a mimic vs. mimic control. Western blot and immunostaining were used to confirm the expression of some targeted genes/proteins. A total of 251 differentially expressed mRNAs and 163 proteins were identified. We found that miR-146a regulates the expression of multiple genes in different pathways, such as the Notch system. In LECs and organ-cultured corneas, miR-146a increased Notch-1 expression possibly by downregulating its inhibitor Numb, but decreased Notch-2. Integrated transcriptome and proteome analyses revealed the regulatory role of miR-146a in several other processes, including anchoring junctions, TNF-α, Hedgehog signaling, adherens junctions, TGF-ß, mTORC2, and epidermal growth factor receptor (EGFR) signaling, which mediate wound healing, inflammation, and stem cell maintenance and differentiation. Our results provide insights into the regulatory network of miR-146a and its role in fine-tuning of Notch-1 and Notch-2 expressions in limbal epithelium, which could be a balancing factor in stem cell maintenance and differentiation.


Assuntos
MicroRNAs/genética , Proteoma/genética , Receptores Notch/genética , Transcriptoma/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Receptores ErbB/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Proteínas Hedgehog/genética , Humanos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Cicatrização/genética
18.
J Extracell Vesicles ; 8(1): 1684862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31762963

RESUMO

Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.

19.
Eur J Haematol ; 103(6): 558-563, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31449697

RESUMO

INTRODUCTION AND OBJECTIVES: The most common mutation within the spectrum of myeloproliferative neoplasms (MPNs) is a mutation in Janus kinase 2 gene (JAK2V617F). It has been observed that, during a course of disease, transformation from JAK2-mutated essential thrombocythemia (ET) to overt polycythemia vera (PV) can occur. Primary objective of this study was to show the incidence of mentioned phenomenon. METHODS: In this study, we analyzed data of 136 patients diagnosed with JAK2-positive ET observed for a median time of 9 years. We examined blood count of each patient at the time of diagnosis and confronted it with 2008 and 2016 WHO criteria for PV and mPV. Additionally, we analyzed JAK2V617F allele burden in two separate time points among selected cases. RESULTS: Confrontation with new criteria resulted in change of diagnosis to PV and mPV in 10% and 9% cases, respectively. Within remaining patients, 14 showed increasing hemoglobin concentration over several months during late course of disease, resulting in change of diagnosis to overt PV. We did not find suggested increase in JAK2 allele burden among transforming patients. CONCLUSIONS: Phenotype transformation to polycythemia was proven to be possible within the group of JAK2-mutated ET; however, cause of this effect remains uncertain.


Assuntos
Janus Quinase 2 , Mutação , Policitemia Vera , Trombocitemia Essencial , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Policitemia Vera/diagnóstico , Policitemia Vera/epidemiologia , Policitemia Vera/etiologia , Policitemia Vera/genética , Trombocitemia Essencial/complicações , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/epidemiologia , Trombocitemia Essencial/genética
20.
J Am Heart Assoc ; 8(15): e012351, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31340693

RESUMO

Background Prevention of adverse remodeling after myocardial infarction (MI) is an important goal of stem cell therapy. Clinical trial results vary, however, and poor cell retention and survival after delivery likely limit the opportunity to exert beneficial effects. To overcome these limitations, we built an implantable intravascular bioreactor (IBR) designed to protect contained cells from washout, dilution, and immune attack while allowing sustained release of beneficial paracrine factors. Methods and Results IBRs were constructed using semipermeable membrane adhered to a clinical-grade catheter shaft. Mesenchymal stem cell (MSC) viability in and paracrine factor release from IBRs were assessed in vitro and IBR biocompatibility and immune protection confirmed in vivo. In a porcine anterior MI model, IBRs containing 25 million allogeneic MSCs (IBR-MSCs) were compared with IBRs containing media alone (IBR-Placebo; n=8 per group) with adverse remodeling assessed by magnetic resonance imaging. Four weeks after MI, IBR-MSCs had no significant change in end-diastolic volume (+0.33±4.32 mL; P=0.89), end-systolic volume (+2.14±4.13 mL; P=0.21), and left ventricular ejection fraction (-2.27±2.94; P=0.33) while IBR-Placebo had significant increases in end-diastolic volume (+10.37±3.84 mL; P=0.01) and ESV (+11.35±2.88 mL; P=0.01), and a significant decrease in left ventricular ejection fraction (-5.78±1.70; P=0.025). Eight weeks after MI, adherent pericarditis was present in 0 of 8 IBR-MSCs versus 4 of 8 IBR-Placebo (P=0.02), suggesting an anti-inflammatory effect. In a separate study, 25 million allogeneic pig MSCs directly injected in the peri-infarct zone 3 days after MI (n=6) showed no significant benefit in adverse remodeling at 4 weeks compared with IBR-MSCs. Conclusions MSCs deployed inside an implantable, removable, and potentially rechargeable bioreactor in a large animal model remain viable, are immunoprotected, and attenuate adverse remodeling 4 weeks after MI.


Assuntos
Reatores Biológicos , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/complicações , Próteses e Implantes , Remodelação Ventricular , Animais , Procedimentos Endovasculares , Desenho de Equipamento , Feminino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...